Intelligent Tools for Creative Graphics

SIGGRAPH 2020 Course

Niloy J. Mitra

Intelligent Tools for Creative Graphics

- Geometric Reasoning
- Physical Constraints
- Data-Driven Techniques and Machine Learning
- Crowdsourcing

Geometry: Ideation, Design, Fabrication

Estimated Creation Cost: \$200,000

Image from: The Next Leap: How A.I. will change the 3D industry, Andrew Price

creating *high-quality content* is challenging and very expensive!!!

geometry semantics uv coordinates mesh quality motion material assignment illumination functionality

• Physics-guided geometric reasoning

Proxy-guided geometric reasoning

• Structure-guided geometric reasoning

Physics-guided geometric reasoning

Proxy-guided geometric reasoning

• Structure-guided geometric reasoning

"World's largest Rube Goldberg machine lights up Christmas tree"
https://www.youtube.com/watch?v=RBOqfLVCDv8

Learning Robustness from Simulations

SIGGRAPH [Designing Chain Reaction Contraptions from Causal Graphs, Roussel et al., Siggraph, 2019] 🤋

Modeling High-dimensional Design Spaces

Online Modeling

Simple Example

Design Options

1. sketching

= interaction(sewing pattern, material, body shape)

Different Domain Representations

SIGGRAPH [Learning a Shared Shape Space for Multimodal Garment Design, Wang et al., 2018]

Multimodal Design

Learning a Shared Latent Space

Loss Function Terms

Supported Edits

3

 \sim

Real Images

Sketch editing:

x4

Problem formulation

Character Motion

[Learning an intrinsic garment space for interactive authoring of garment animation, Wang et al., Siggraph Asia, 2019]

SA2019.SIGGRAPH.ORG

CONFERENCE 17-20 November 2019 - EXHIBITION 18-20 November 2019 - BCEC, Brisbane, AUSTRALIA

• Physics-guided geometric reasoning

Proxy-guided geometric reasoning

• Structure-guided geometric reasoning

Image Manipulation

[Interactive Images: Cuboid Proxies for Smart Image Manipulation, Zheng et al., Siggraph, 2012]

Proxies: Arrangement of Cuboids

repetitions

co-planarity

Edit Examples

Proxies: Generalized Cylinders

[3-Sweep: Extracting Editable Objects from a Single Photo, Chen et al., Siggraph Asia, 2013]

10541.png

10772.png

12345.png

12855.png

14110.png

world: -48.4829, 47.248 FPSG:27700: 528681.9034.18

FrankenGAN Architecture

[FrankenGAN: Guided Detail Synthesis for Building Mass Models Using Style-Synchonized GANs, Kelly et al., 2018]

FrankenGAN: 'Procedural' Steps

Input: Madrid

Output: Madrid

• Physics-guided geometric reasoning

• Proxy-guided geometric reasoning

Structure-guided geometric reasoning

[StructureNet: Hierarchical Graph Networks for 3D Shape Generation, Mo et al., Siggraph Asia, 2019]

structure: elements (parts) + relationships

Examples of Domains with Structure

3d shapes

2D layouts

Patterns

Scene Compositions & Scene Graphs

Li et al., GRAINS: Generative Recursive Autoencoders for INdoor Scenes, TOG 2018

Why Structure?

Unstructured representation

- Regular sample grids and point clouds
- Have received more research

point clouds for man-made 3d objects

images for patterns

Structured representation

Provides additional information for down-stream tasks

Change type of backrest? Transform sub-graph?

Changes the data flow • and inductive bias of a network GT. w/o struc. with struc.

w/o edges with edges

Goal: A Smooth, Explorable Shape Space

... of both geometry and structure

With vs. Without Structure

source

target

Object Representation: Part Geometry

Object Representation: Part Structure

Object Representation: Part Structure

Object Representation: Sibling Relationships

Reflectional Symmetry $\tau_{\rm r}$ Rotational Symmetry $\tau_{\rm o}$ Translational Symmetry $\tau_{\rm t}$ Adjacency $\tau_{\rm a}$

Object Representation: Part Structure

Architecture: Variational Autoencoder

A Hierarchy of Graphs

VAE with hierarchical graph encoder and decoder

Applications

free generation

interpolation

generated

closest training samples

Comparison to GRASS

Applications

reconstruction

editing

Structuring Shape Distributions

Shape Deltas

[StructEdit: Learning Structural Shape Variation, Mo et al., CVPR, 2020]

Shape Neighborhoods

Learn conditional distributions $p(\Delta S_{ij}|S_i)$ of deltas in all neighborhoods with a VAE

Infer Main Edit Modes

Transfer Analogous Edits

58

Latent Space of Programs

dates		
iender:		
ilasses:	5	6
'aw:		. 9 0
itch:	(an)	20
lald:	1	Ē.
leard:	<u>t</u>	
ge:	3	100
xpression:	•	

All

Lighting Left->Right:	. <u> </u>
Right->Left:	·
Down->Up:	·
Up->Down:	+
No light:	
Front light:	

Further details

Physics-guided geometric reasoning

Proxy-guided geometric reasoning

Structure-guided geometric reasoning

http://geometry.cs.ucl.ac.uk/publications.php

Special thanks to all our collaborators and group members.

